Office of Health Security

A One Health View of Biosecurity: Pathway to Research Needs Prioritization

Jacqueline Fletcher

Oklahoma State University, Emerita Consultant, Sandia National Laboratories Member, HFAR University Consortium Member, University Consortium Tactical Advisory Committee

Exceptional service in the national interest

One Health / One Biosecurity

Evolving Perspectives

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

One Health

- One Health (OH) often shown as a Venn diagram, containing 3 overlapping circles (human, animal, environmental health)
- Original concept based on shared disease threats for humans and animals (zoonotic diseases/spillover)
- Global OH Initiative Impact Report (2020): plant health is equally important but still depicts humans, animals and plants as *separate from* rather than *a component of* the environment
- WHO reconsidered the visualization of OH to prioritize integration and systems thinking, rather than segregation

One Health -> One Biosecurity

Strong sectorial identities ("silos") still exist within biosecurity

P. Hulme. 2020.

Emerg Top Life Sci 4:539-549.

- Associated with specific international standards, economic interests, research communities & stakeholder interests
- One Biosecurity: An interdisciplinary approach to biosecurity research & policy
 - Builds on interconnections among human, animal, plant & environmental health
 - Involves a systematic approach

Emerging Topics in Life Sciences (2020) 4 539–549 https://doi.org/10.1042/ETLS20200067

Review Article

One Biosecurity: a unified concept to integrate human, animal, plant, and environmental health

© Philip E. Hulme

The Bio-Protection Research Centre, Lincoln University, PO Box 85084, Canterbury, New Zealand Correspondence: Philip E Hulme (philip.hulme@lincoln.ac.nz)

In the wake of the SARS-CoV-2 pandemic, the world has woken up to the importance of biosecurity and the need to manage international borders. Yet strong sectorial identities

ORTLAND

One Health -> One Biosecurity

- The One Biosecurity concept showing links between human, animal, plant and environmental health...
- ...arising from the impacts of invasive alien plants, animals and pathogens

5

– Hulme 2020

One Biosecurity

- Example: Giant African snail
 - Invasive, introduced widely throughout the tropics (incl FL & HI)
 - Significant crop loss (feeding)
 - Vector of plant pathogenic fungi (Phytophthora spp)
 - Outcompetes native gastropods

- Intermediate host in transmission of Angiostrongulus spp, agent of eosinophilic meningoencephalitis in livestock & humans
- To be effective, biosecurity policies must be based on a universal approach that
 - Seeks synergies between health, agriculture and environmental sectors
 - Considers local, regional, national and international levels
 - Shifts traditional focus from regulating individual organisms and sectors to building an overall risk management framework

Exceptional service in the national interest

Needs for Biosecurity Research for Animal and Plant Systems

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Capturing Research Needs

Premier Reference Source

Tactical Sciences for

K Cardwell and K. Bailey, Eds. 2022. IGIGlobal

- Many sources, references, lists exist
- Recent example: A comprehensive look at the tactical sciences behind current biosecurity measures and opportunities for improvement for both plant and animal systems.
- Highlights the interoperability of many of the tactics for animals and plants, and identifies synergies, gaps, and needs.
 - **Case studies** illustrate overlapping concerns and operations during biosecurity-relevant events.

Tactical Sciences for Biosecurity in Animal and Plant Systems

- Economics of Animal and Plant Biosecurity
- Genetic Processes of Pathogen Emergence
- Risk Analysis Human Mediated Movement of Pests and Pathogens
- Safeguarding Agricultural & Environmental Biosecurity Before Entry
- Surveillance for Detection of High-Consequence Pests and Pathogens
- Emergency Response: Organizational Structure and Coordination
- Response and Recovery Tactics
- Microbial Forensics in Agricultural and Environmental Biosecurity

Exceptional service in the national interest

Biosecurity Research Prioritization

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

One Possible Tool: Biosecurity Research Prioritization Matrix

PILLARS

ONE HEALTH APPROACH TO BIOSECURITY: PRIORITIZING RESEARCH

	PILLARS	FUNCTIONS	RESEARCH NEEDS			
Preparedness & Prevention		Policy / Strategy Development	Scientific underpinning of policies: regulatory, trade, border (import/export)			
		Risk Assessment / Forecasting	Disease modeling & epidemiology, economic modeling & forecasting, pest risk analysis			
Protection & Detection	Preparedness & Prevention		Communication & sociological rsch; public skepticism and compliance reluctance;			
	Begin with the major pillars of a biosecurity plan (those 5 are from the HEAP Sandia canabilities mat					
Iviitigation	(these 5 are norm the firAR-satiua capabilities matrix					
	For each	ch, identify the esse	ntial components or			
Response	functions Each function must be underpinned by sound science					
Recovery	Identify research needed to provide that science					

ONE HEALTH APPROACH TO BIOSECURITY: PRIORITIZING R

PHASES	FUNCTIONS	RESEARCH NEEDS	l
	Policy / Strategy Development	Scientific underpinning of policies: regulatory, trade. border (import/export)	
	Risk Assessment / Forecasting	Disease modeling & epidemiology, economic modeling & forecasting, pest risk analysis	
reparedness & Prevention	Awareness / Outreach	Communication & sociological rsch; public skepticism and compliance reluctance; management approaches; environmental impacts	ſ
	Availability of Appropriate Tools	Protection, mitigation, response & recovery (see below)	Ī

	Diagnostics	Assay development (serol, molec, volatiles/canines, visual, other); taxonomy/nomenclature			
	Surveillance	Surveillance (passive & targeted), detection tools, aerial monitoring (drones), sentinel plots, disease delimitation, spread prediction, pathogen/vector ranges, data analytics; sampling methods;			
Protection & Detection	Biosecurity	Biosecurity plans at all levels (local, regional, state, national, international); what works where			
	Border Security & Commodity Inspection	Rick assessment & prioritization of inspection, rapid detection & ID, risk mitigation			
		"Smart farms": crop health monitoring systems (data collection & analysis, recommendations); crop info (cvs, planting info pre- & prost_plant treatments, widd			
	Cyber Security	predictions)			

		Disease management strategies (chemical,
		biological, cultivation, nutrition, crop
		destruction); matching method to situation
		fattenting and shitten being a familier and shitte
	Prophylaxis Development & Distribution	(errectiveness, risk to numans/environment,
Wingation		Analysis and modeling to understand
		Analysis and modeling to understand
		potential impacts on cross-sector systems
		(transportation, water, communications,
	Continuity of Operations Planning	food availability & safety)

	Quarantine, Permitted Movement, Containment, Delimitation	Disease epidemiology, modeling, tool development
n	Decontamination	Decon options, environmental & health issues
Kesponse		Intentional vs. natural (decision tools, law enforcement tools, evidence collection,
		criminal investigation, forensic tools -
	Incident Investigation	microbial and other)

	Trade Recovery	Market research/restoration, commodity substitution
en Recovery	Economic Recovery	Commodity/industry;farm/producer;design of effective assistance & counseling programs; restoration of infrastructure & facilities
	Environmental Recovery	Tools for damage evaluation, modeling to determine effectiveness
	After-Action Review & Planning	Lessons learned

Biosecurity Research Prioritization Matrix

Example Matrix

- Each Pillar contains critical Functions
- Each Function contains critical Research Needs

Pillar: Protection and Detection

		Assay development (serol, molec,
		volatiles/canines, visual, other);
	Diagnostics	taxonomy/nomenclature
		Surveillance (passive & targeted), detection
		tools, aerial monitoring (drones), sentinel
		plots, disease delimitation, spread
		prediction, pathogen/vector ranges, data
	Surveillance	analytics; sampling methods;
Protection &		Biosecurity plans at all levels (local,
Detection		regional, state, national, international); what
	Biosecurity	works where
		Rick assessment & prioritization of
	Border Security & Commodity	inspection, rapid detection & ID, risk
	Inspection	mitigation
		"Smart farms": crop health monitoring
		systems (data collection & analysis,
		recommendations); crop info (cvs, planting
		info, pre- & post-plant treatments, vield
	Cyber Security	predictions)

ONE HEALTH APPROACH TO BIOSECURITY: PRIORITIZING RESEARCH					_		
PHASES	FUNCTIONS	RESEARCH NEEDS	l	PLANT	ANIMAL	HUMAN	
	Policy / Strategy Development	Scientific underpinning of policies: regulatory, trade_border (import/export)	Γ	x	x	х	
	Risk Assessment / Forecasting	Disease modeling & epidemiology, economic modeling & forecasting, pest risk analysis		x	x	x	
reparedness & Prevention	Awareness / Outreach	Communication & sociological rsch; public skepticism and compliance reluctance; management approaches; environmental impacts		x	x	x	_
	Availability of Appropriate Tools	Protection, mitigation, response & recovery (see below)		x	x	х	
			_				-
	Diaenostics	Assay development {serol, molec, volatiles/canines, visual, other); taxonomv/nomenclature		x	x	x	
	Surveillance	Surveillance (passive & targeted), detection tools, aerial monitoring (drones), sentinel plots, disease delimitation, spread prediction, pathogen/vector ranges, data analytics; sampling methods;		x	x	x	
Protection & Detection	Biosecurity	Biosecurity plans at all levels (local, regional, state, national, international); what works where		x	x	x	
	Border Security & Commodity Inspection	Rickassessment & prioritization of inspection, rapid detection & ID, risk mitigation		x	x	x	
	Cyber Security	"Smart farms": crop health monitoring systems (data collection & analysis, recommend ations); crop info (cvs, planting info, pre- & post-plant treatments, yield predictions)		x	x	x	
							-
	Prophylaxis Development & Distribution	Disease man agement strategies (chemical, biological, cultivation, nutrition, crop destruction); matching method to situation (effectiveness, risk to humans/environment,		x	x	x	-
Mitigation	Continuity of Operations Planning	Analysis and modeling to understand potential impacts on cross-sector systems (transportation, water, communications, food availability & safety)		x	x	x	
							Γ
	Quarantine, Permitted Movement, Containment, Delimitation	Disease epidemiology, modeling, tool development		x	x	x	
Response	Decontamination	Decon options, environmental & health issues		x	x	x	
Response	incident Investigation	Intentional vs. natural (decision tools, law enforcement tools, evidence collection, criminal investigation, forensic tools - microbial and other!		x	x	x	
							Γ
	Trade Recovery	Market research/restoration, commodity substitution		x	x	x	F
Recovery	Economic Recovery	Commodity/industry; farm/producer; design of effective assistance & counseling programs; restoration of infrastructure & facilities		x	x	x	
		Tools for damage evaluation, modeling to	x x	v	Γ		
	En viron mental Recovery	determine effectiveness		A V	v	×	F

Where does One Health come in?

- Consider which Pillars, Functions and underlying Research Needs are applicable to each sector: Plants, Animals and Humans
- At a level "above the weeds," ALL of these categories are relevant to all of the sectors
- Recognizes
 - Overlapping objectives and goals
 - Suggests inter- and cross-disciplinary research approaches
 - One Health / One Biosecurity

Who is Doing Research on Which Topics?

PHASES	FUNCTIONS	RESEARCH NEEDS		CURREN	T RESEAR	RESEARCH IN THIS A		
			NC	Okla	Univ	LA		
		Scientific underpinning of policies:	State	State	of	State		
	Policy / Strategy Development	regulatory, trade, border (import/export)	Univ	Univ	Ark	Univ		
							USDA	
					Penn	ARS -		
Dueu e ve due e e e		Disease modeling & epidemiology, economic	Kansas	UC	Ohio	State	Ft.	
Preparedness 8 Browention	Risk Assessment / Forecasting	modeling & forecasting, pest risk analysis	State U	Davis	State U	Univ	Detrick	
& Prevention		Communication & sociological rsch; public						
		skepticism and compliance reluctance;						
		management approaches; environmental	Univ of					
	Awareness / Outreach	impacts	Florida					
		Protection, mitigation, response & recovery	See	See	See	See	See	
	Availability of Appropriate Tools	(see below)	below	below	below	below	below	

Identify common interests & research areas across institutions

Identify potential beneficial collaborations & opportunities

Leverage resources from multiple research & service laboratories

Prioritizing Biosecurity Research: HOW?

Steps

- Input from universities, private industry, USDA/NIH, other government agencies
- Consider the broad spectrum of biosecurity-related research
 - ⁺ What has already been done
 - ⁺ What is being done currently, and by whom
- Identify gaps and needs
- Utilize a risk-informed process for gap prioritization
- Identify intersections/overlaps/possible synergisms among groups & projects
- Build collaborations that leverage experience, perspectives & resources

• **HFAR University Consortium** – Supports these objectives

What's Next?

UC Annual Meeting 2024

- > Breakout discussions
- > Collate, annotate and share input from all sessions among UC members and with DHS HFAR
- Follow-up nearer term
 - Form UC Subgroups that could flesh out areas of expertise during the coming year?
 O Plant, Animal, Health, Economics/Sociology, Risk Assessment, Modeling, other
 - > Engage other stakeholders (other universities, industry, federal partners, scientific societies)
 - Refine (or re-design) Biosecurity Research Needs Matrix
- Follow-up out-term
 - > Prepare UC recommendations & share with end users (Congress, funding agencies, other)
 - Track progress and report
 - Rinse and repeat

Thank You

Jacque Fletcher jacqueline.fletcher@okstate.edu